

EECS 562
Homework 4

1. Let the message signal be

$$x_{bb}(t) = 2\cos(3000\pi t) + 4\cos(2000\pi t) + 6\cos(1000\pi t)$$

be input to a DSB-SC modulator at a carrier frequency of 50kHz and an unmodulated carrier amplitude of 20.

- a. Find the Fourier transform of the DSB-SC signal.
- b. Plot the spectrum of the DSB-SC signal.
- c. Identify the upper and lower sideband in the DSB-SC signal.
- d. What is the RF bandwidth?
- e. What is the total transmitted power?

2. Let the message signal be $x_{bb}(t) = 10\text{rect}(t/0.01)$ be input to a DSB-SC modulator at a carrier frequency of 40kHz and an unmodulated carrier amplitude of 5.

- a. Find the Fourier transform of the DSB-SC signal.
- b. Plot the spectrum of the DSB-SC signal.
- c. What is the RF bandwidth?

3. Let the message signal be $x_{bb}(t) = 4000 \text{sinc}^2(10000t)$ be input to a DSB-SC modulator at a carrier frequency of 40 kHz and an unmodulated carrier amplitude of 10.

- a. Plot the spectrum of the DSB-SC signal.
- b. What is the RF bandwidth?

4. Consider a sequence of information bits $b_i \{ \dots, 0, 1, 0, 1, 0, 1, 0, 1, \dots \}$, That is, alternating 0's and 1's. A baseband analog message signal $m(t)$ is formed as

$$m(t) = \sum_{k=-\infty}^{\infty} d_i \text{rect}\left[\frac{t - \frac{(2k+1)\tau}{2}}{\tau}\right]$$

where $d_i = -2$ if $b_i = 0$ and $d_i = +2$ if $b_i = 1$

- a. With $\tau = 1\text{ms}$, plot $m(t)$ for $k = 1 \dots 6$.
- b. What is the DC (or average value) of $m(t)$?
- c. Find the Fourier Series of $m(t)$ and plot its amplitude spectrum.
- d. DSB-SC modulation is used to transmit $m(t)$ with a carrier wave of carrier signal $10 \cos(2\pi f_c t)$ with $f_c = 20\text{kHz}$. Plot the RF signal.
- e. Plot the spectrum of the DSB-SC modulated signal
- f. With $\tau = 1\text{ms}$ find the average energy per bit in the modulated signal.
- g. How would the spectrum of the RF signal change with a different mapping of bits to levels, specifically, changing $d_i = -4$ if $b_i = 0$ and $d_i = +4$ if $b_i = 1$.

5. Let $s(t)$ be an DSB-SC signal, $x_{RF}(t) = x(t) \cos(2\pi f_c t)$ with $f_c = 100\text{kHz}$ and $x(t) = \cos(2000\pi t)$.

- a. There is only a frequency error in the coherent detector of $\Delta f = 10\text{Hz}$. Find the output of the coherent detector, $y(t)$ and plot $y(t)$.
- b. There is only a phase error in the coherent detector of 45° . Find the output of the coherent detector, $y(t)$ and plot $y(t)$.

6. In BPSK receivers why is both carrier and bit synchronization needed?

7. A received binary signal with a bit rate of 10kb/s is with $f_c=100$ KHz

1 bit then transmit $10^{-4}\cos(2\pi f_c t)$ $0 \leq t \leq T_b$

or

0 bit then transmit $-10^{-4}\cos(2\pi f_c t)$ $0 \leq t \leq T_b$

a. Is this a BPSK or ASK signal?

b. What is the bandwidth of RF signal?

c. What is the E_b the energy/bit?

d. Change the transmitted signal for a 0 bit to 0, that is, transmit 0 if 0 bit. and repeat a-c

8. Assume that a DSB-SC signal is subjected to intentional interference $I(t)$. The received signal is of the form,

$$y(t)=10 x(t) \cos(2\pi f_c t)+I(t)$$

Where

$$x(t)=\cos(2\pi 10000t)$$

and

$I(t)=\sqrt{2} \cos(2\pi(f_c + \Delta f)t)$ where $\Delta f < 10$ kHz that is, the interferer is in the passband of the DSB-SC signal,

a. What is the bandwidth of $y(t)$?

b. What is the power in $y(t)$?

c. Find the Signal-to-interference power ratio (in dB) at the output of a synchronous receiver?

9. In the BPSK receiver output of the receiver filter is sampled at the bit rate and the sample value compared to a threshold, why the threshold value = 0.

10. In the ASK receiver output of the receiver filter is sampled at the bit rate and the sample value compared to a threshold, why the threshold value not equal to zero.